Jumat, 28 September 2018

Teknik Regresi (Regression/Predictive) pada Data Mining

Pengertian Data Mining

Data mining merupakan proses yang mempekerjakan satu atau lebih teknik pembelajaran komputer (machine learning) untuk menganalisis dan mengekstraksi pengetahuan (knowledge) secara otomatis. Pada artikel sebelumnya di www.teorikomputer.com kami membahas tentang teknik klasifikasi pada data mining. Pada pembahasan kali ini akan kami sampaikan salah satu teknik pada data mining yaitu teknik regresi. Sebelum kita membahas teknik regresi pada data mining kita terlebih dahulu harus tahu macam-macam teknik dan sifat data mining.

Sumber gambar: ittelkom-pwt.ac.id

Baca Juga: Teknik Klasifikasi (Classification /Predictive) pada Data Mining

Macam-macam Teknik dan Sifat Data mining

Ada beberapa teknik dan sifat data mining yaitu sebagai berikut :
  1. Classification (Predictive)
  2. Clustering (Descriptive)
  3. AssociationRule Discovery (Descriptive)
  4. SequentialPattern Discovery (Descriptive)
  5. Regression (Predictive)
  6. DeviationDetection (Predictive)
Baca Juga: Permsalahan Dalam Data Mining

Teknik Regresi(Predictive) dan aplikasinya pada Data Mining

Teknik Regresi dilakukan dengan memprediksi nilai dari suatu variabel kontinyu yang diberikan berdasarkan nilai dari variabel yang lain, dengan mengasumsikan sebuah model ketergantungan linier atau nonlinier. Teknik ini banyak dipelajari dalam statistika, bidang jaringan saraf tiruan (neural network).

Contoh aplikasinya: 
  • Memprediksi jumlah penjualan produk baru berdasarkan pada belanja promosi/iklan. 
  • Memprediksi kecepatan angin sebagai suatu fungsi suhu, kelembaban, tekanan udara, dsb.
  • Time series prediction dari indeks stock market.

Tidak ada komentar:

Posting Komentar

Simulasi jaringan peer to peer menggunakan packet tracer

Pada artikel sebelumnya saya sudah membahas mengenai peer to peer pada artikel sistem komunikasi komputer dan simulasi jaringan client serve...